

IPIC 2018

The Meaning and Importance of True Intermodal Route Planning in the Context of the Physical Internet

Matthias Prandtstetter
AIT Austrian Institute of Technology

INTERMODAL ROUTE PLANNING

Why is intermodal route planning important for the Physical Internet?

WHY INTERMODAL ROUTE PLANNING?

- aim to achieve synchromodal routing
- based on multimodal network
- real-time switching between modes
 - -> intermodal routes "might happen"
- complexity of decision too high for humans
 - -> need for decision support tools

DRAWBACKS OF STATE-OF-THE-ART INTERMODAL ROUTE PLANNERS

input

- place of departure A
- place of arrival B
- time of departure or arrival
- modes of transportation to utilize
- transhipment points (in case of intermodal route planning)

output

- the best route from A to B utilizing the selected modes of transportation (with the specified transhipment points)
- -> this is not, what we need!

WHAT WE ARE REALLY NEEDING

input

- place of departure A
- place of arrival B
- time of departure or arrival
- possible modes of transportation to utilize

output

a set of good fitting routes from A to B utilizing one or more of the specified modes of transportation

© AIT

INTERMODAL ROUTE PLANNING

the meaning of true intermodality

THE MEANING OF TRUE INTERMODALITY

we have to distinguish the following three steps

- input for route planning
- the process of route planning (incl. the planned route)
- the actual trip
- -> the meaning of intermodality is not the same for these three steps

INPUT – STATE-OF-THE-ART

- origin
- destination
- departure/arrival time
- modes of transportation
- (transhipment points)

state-of-the-art UI @ Google

INPUT - OUR APPROACH

- origin
- destination
- departure/arrival time
- possible modes of transportation
- (transhipment points)

next generation UI © i-Travel York

ROUTE PLANNING – STATE-OF-THE-ART

- find a route that
 - starts at given point (and time)
 - ends at given point (and time)
 - utilizes all selected modes of transportation

or

- find a route that
 - start at a given point (and time)
 - ends at a given point (and time)
 - utilizes one mode of transportation

a forced intermodal route from A to B

ROUTE PLANNING – OUR APPROACH

- find a set of routes that
 - start at given point (and time)
 - end at given point (and time)
 - utilize one, some or all of the specified modes of transportation

route 1: bike

ROUTE PLANNING – OUR APPROACH

- find a set of routes that
 - start at given point (and time)
 - end at given point (and time)
 - utilize one, some or all of the specified modes of transportation

route 2: public transport

ROUTE PLANNING – OUR APPROACH

- find a set of routes that
 - start at given point (and time)
 - end at given point (and time)
 - utilize one, some or all of the specified modes of transportation

route 3: first car, then public bike-sharing

INTERMODAL TRIPS

state-of-the-art

the trips are performed as planned

our approach / the PI approach

- trips are adapted in real-time
 - -> it is possible that even an intermodal trip turns out to be unimodal at the end
 - e.g. due to
 - incidents
 - changes in orders
 - changes in transportation network

INTERMODALITY IN LOGISTICS

examples for application

PROMOTION OF SUSTAINABLE MODES OF TRANSPORTATION

- no more standard decisions like
 - "we did it always like this"
 - "the truck is the most flexible one"
- information about possible alternatives
- reducing the complexity of planning
 - especially in case of full integration into decision support tools

AUTOMATION OF RE-PLANNING

- integration into real-time planning tools
- reducing complexity for decision makers
- step towards self-organizing system

TRANSPORT NETWORK DESIGN AND NETWORK SERVICE DESIGN

- integrated operations research methods
- complex simulations of future scenarios in transport networks possible
 - where to build new transportation infrastructure
 - which type of infrastructure to build (e.g. drones, hyperloops,...)
- optimizing network services (PI services)
 - planning of regular services (e.g. along the Danube)
 - (ad-hoc) planning of fallback solutions in case of incidents

SYSTEM-AWARE ROUTE PLANNING

- focus on transportation system as a whole, including
 - other traffic participants (freight and passengers)
 - residents
 - communities/municipalities
 - schools, hospitals, etc.
- no low-hanging fruits but optimization of the system
 - e.g. improving air quality vs. real-time deliveries in e-commerce
- try it for your private and business trips download the App

THANK YOU!

Matthias Prandtstetter

matthias.prandtstetter@ait.ac.at

This work partially received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 636160-2 (OPTIMUM). Further, this work partially received funding from the Austrian Federal Ministry of Transport, Innovation and Technology's (bmvit) research and innovation programme "Mobilität der Zukunft" under grant agreement No 859115 (inned).

