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Problem Statement
Multimodal replenishment as a dual sourcing problem

Multimodal Replenishment

Fast Mode (High Cost, Short Lead Time)
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Slow Mode (Low Cost, Long Lead Time)

Complexity
* Intractable for large lead times due to pipeline inventory vector
« Optimal solutions found for specific circumstances

Additional challenges:
» Service schedule of transport modes
* Production Schedule




State of the art

Heuristic policies group parts of pipeline inventory vector

* Complexity arises from pipeline inventory vector
* State-of-the-art heuristic policies hence use:

o 1 or 2 inventory positions

o 1 or 2 order up-to levels

Pipeline Inventor On-hand
Number of periods before pipeline inventory arrives: inventory

o I _ I
a I Lead time fast mode = 3 days :
m | Lead time slow mode = 7 days I E:_

Warehouse




State of the art

Heuristic policies work around complexity

Single Index
(1 inventory position)

Tailored Base Single Index
Surge Policy Dual Base
Single Base Dual Base
(1 order up-to (2 order up-to
level) (Capped) levels)
Dual Index
Dual Base
Dual Index

(2 inventory positions)




Motivation
Can Atrtificial Intelligence be used to solve the dual sourcing problem?

"l would say, a lot of the value that we're getting from machine learning is
actually happening kind of beneath the surface. It is things like improved
search results, improved product recommendations for customers, improved
forecasting for inventory management, and literally hundreds of other things
beneath the surface," Bezos said.




Machine Learning Overview

Machine
Learning

Supervised

Learning

Classification on labeled data:
Recognizing cats/dogs/persons on
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Unsupervised
Learning

Clustering unlabeled data:

Customer segmentation, music style
segmentation

Clustered data

Original unclustered data
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Reinforcement

Learning

Learn policies based on experience and
feedback from the environment

“Trial and error”

environment
from state s, take action a

get reward R, new state s*
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But ... major recent breakthroughs!
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Contribution

* Smart algorithm learns itself a replenishment policy based
on full pipeline inventory vector

* Suitable for complex settings
o Non-linear ordering cost

o Include ordering/delivery/production schedules
* E.g. non-dalily train/boat schedule

* First application of deep reinforcement learning in dual
sourcing
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Methodology

* Problem modeled as a Markov Decision Process (S,A,R(s,a), y)
« State space (S) = Inventory Vector + Day of week

S:[[(U) J o (L) D]:

 Action space (A) = Ordering Vector (Fast + Slow)
A = [af{f) a,(s)] ;

 Rewards (R(s,a)) = Reward realization (ordering + inventory cost)
Ls
r(sea;) = clal + ol + RN+ 01 + > pl
=1
« y = discount factor

* Objective: minimize future discounted costs

: .. 2. t—1,.
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Methodology

* Dynamic Programming intractable =» Approximate Dynamic Programming
- Reinforcement Learning — Q-learning
Qt+1(st,ar) = Qi(se,ae) + a(repr + m(?XQt(St—I—la a) — Q(st, at))

Action (a) New state (St1)

Environment

* Q-learning slow for large state space = Deep Q-learning

o In put State S e e hidden layer 1 hidden layer 2 hidden layer 3
o Output: Q-value for each action '




Methodology

* Asynchronous Advantage Actor-Critic (A3C)
o Actor develops policy Global Network
o Critic evaluates policy

Input (s)
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Hyperparameter Tuning

e Grid Search
e Random Search
* Bayesian Optimization
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Results

Deep Q-Learning algorithm learns itself a ‘'smart’ replenishment policy
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Figure 1: Cost performance during training




State: Inventory Pipeline
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State: Inventory Pipeline
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State: Inventory Pipeline
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State: Inventory Pipeline
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Results

Matching performance state-of-the-art dual sourcing policies with daily frequencies
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Figure 2: Benchmark with state-of-the-art dual sourcing policies
« Equal performance typical dual sourcing setting (daily frequencies)

« We do not lose performance when extending problem to:
» Non-daily ordering frequencies
« E.g. including rail schedule or production schedule
* Non-linear ordering cost (e.g. per container instead of per unit)
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Methodology

Smart replenishment algorithm — Deep Q-learning

Algorithm 1 Deep Reinforcement Learning (DRL) algorithm
1: Initialize replay memory D to capacity ¢
2: Initialize Q-network with random weights 6
3: Initialize Target Network Q with weights 6~ = 6
4: Choose Initial State s;
5  for t = 1,7 do
6: for n=1, N do

_Jrandom action, with probability (1 — €)
" “= argmin,. 4 {Q(s;,a;0)}, else
8: Simulate using a; and observe reward r; and next state s;;4
9: Store (S¢, at, ¢, S¢+1) in replay memory D

10: end for
11: Sample random minibatches of size K from D
12: for =1, K do
r; +YQ(s,argming c 4, Q(s;:1,a’;07),0), if (s,a) in sample j
b = Q(s;,a:0), else
14: end for
15: Minimize loss = >~ (y; — Q(s;, a;;0))* using Adam optimizer
16: Every 2 steps, update Target network Q =qQ
17: end for




Methodology

Smart replenishment algorithm — A3C algorithm

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0, and global shared counter T' = (0
// Assume thread-specific parameter vectors 0" and 6,
Initialize thread step counter £ < 1
repeat
Reset gradients: dfl < 0 and df,, < 0.
Synchronize thread-specific parameters ' = 6 and 0, = 0,,

tstcn"t =1
Get state s;
repeat

Perform a; according to policy 7(a¢|s¢;6")
Receive reward r; and new state s;4;

t—t+1
T'—T+1
until terminal s or t — tstart == tmax
R— 0 for terminal s¢
1 Vi(st,0) for non-terminal s¢// Bootstrap from last state
forie {t—1,... tsiart} do
R+ ri+79R

Accumulate gradients wrt 8": df < df + Vg log m(a;|s:;60") (R — V (s:;0,))
Accumulate gradients wrt 8,: df, < df, + 9 (R — V (s::6.))° /06,
end for

Perform asynchronous update of # using df and of 6, using df,.
until 7 > Trhaw




Results

Within 2% of optimal solution in a simple setting

Performance versus optimal for different lead
times regular mode assuming Linear Ordering Cost

(LT e=0//c_r=100//c_e=150// h=5 //b=495)
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Results

Maintaining performance in a more complex setting

Performance versus optimalfor differentlead times
regular mode assuming Stepwise Ordering Cost
(LT e=0//c_r=100//c e=150 //h=5//b=495//cap_r
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