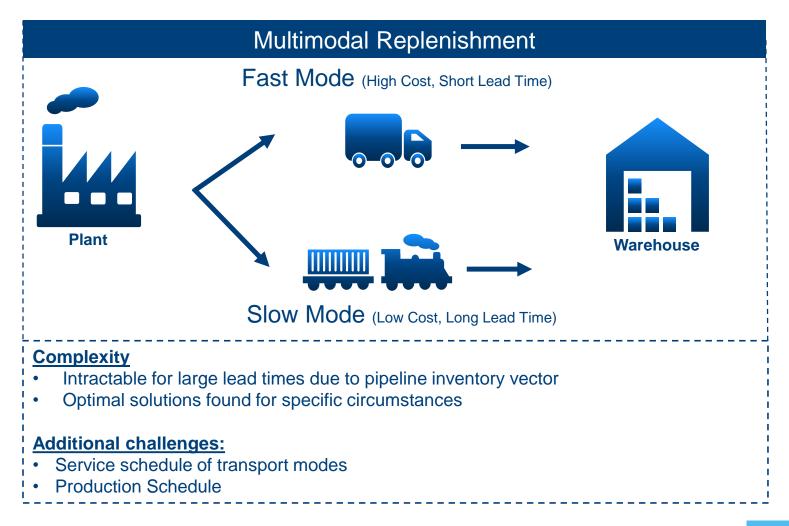


A deep reinforcement learning approach for synchronized multimodal replenishment

joren.gijsbrechts@kuleuven.be robert.boute@kuleuven.be

Problem Statement

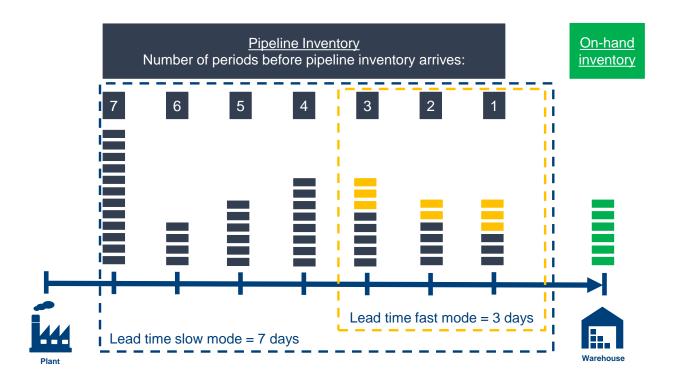
Multimodal replenishment as a dual sourcing problem



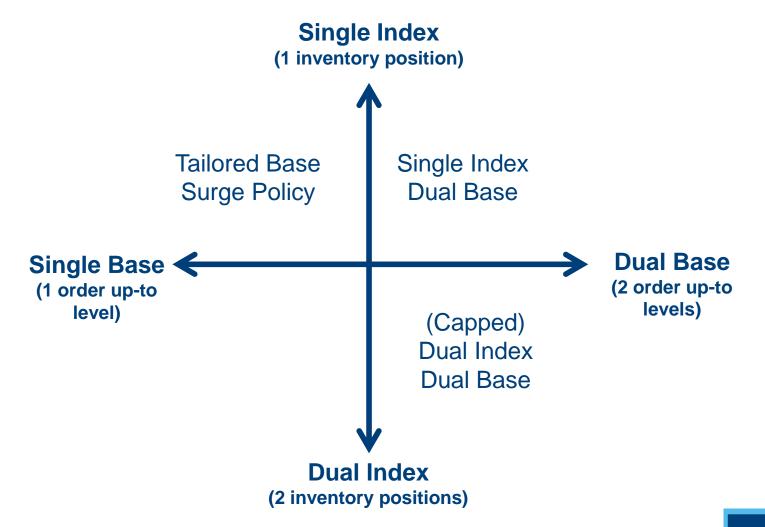
State of the art

Heuristic policies group parts of pipeline inventory vector

- Complexity arises from pipeline inventory vector
- State-of-the-art heuristic policies hence use:
 - 1 or 2 inventory positions
 - 1 or 2 order up-to levels



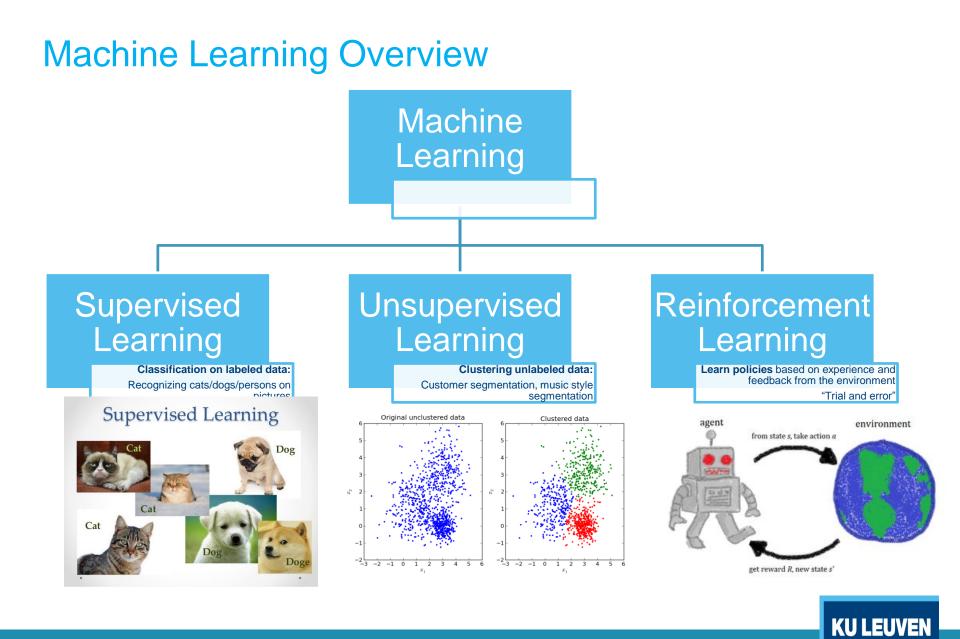
State of the art Heuristic policies work around complexity



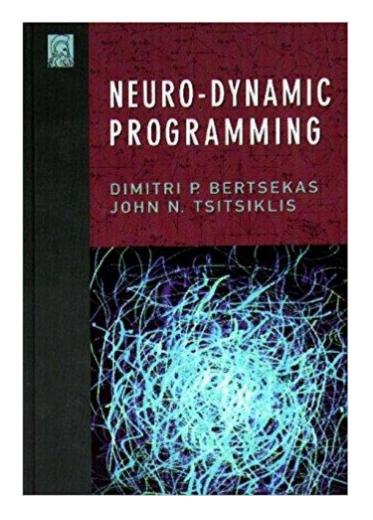
Motivation

Can Artificial Intelligence be used to solve the dual sourcing problem?

"I would say, a lot of the value that we're getting from **machine learning** is actually happening kind of **beneath the surface**. It is things like improved search results, improved product recommendations for customers, improved forecasting for inventory management, and literally hundreds of other things beneath the surface," Bezos said.



Reinforcement Learning, no new field!



Approximate Dynamic Programming

SECOND EDITION

Solving the Curses of Dimensionality

Warren B. Powell

Wiley Series in Probability and Statistics

WILEY

www

But ... major recent breakthroughs!

Contribution

- Smart algorithm learns itself a replenishment policy based on full pipeline inventory vector
- Suitable for complex settings
 - Non-linear ordering cost
 - Include ordering/delivery/production schedules
 - E.g. non-daily train/boat schedule
- First application of deep reinforcement learning in dual sourcing

- Problem modeled as a **Markov Decision Process** (S,A,R(s,a), γ)
 - State space (S) = Inventory Vector + Day of week

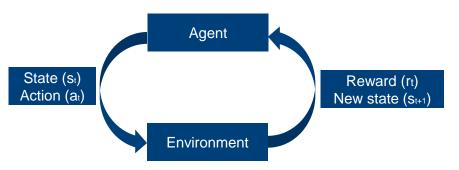
 $S = \begin{bmatrix} I^{(0)} & I^{(1)} & \dots & I^{(L_s)} & D \end{bmatrix},$

- Action space (A) = Ordering Vector (Fast + Slow) $A = \begin{bmatrix} a^{(f)} & a^{(s)} \end{bmatrix},$
- Rewards (R(s,a)) = Reward realization (ordering + inventory cost) $r(s_t, a_i) = c^f a_i^{(f)} + c^s a_i^{(s)} + h[I_{t+1}^{(0)}]^+ + b[I_{t+1}^{(0)}]^- + \sum_{i=1}^{L_s} pI_{t+1}^{(i)}.$
- $\gamma = discount \ factor$
- Objective: minimize future discounted costs

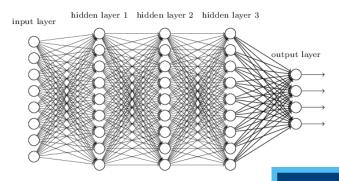
 $\min r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{t-1} r_t + \dots,$

- Dynamic Programming intractable → Approximate Dynamic Programming
 - Reinforcement Learning Q-learning

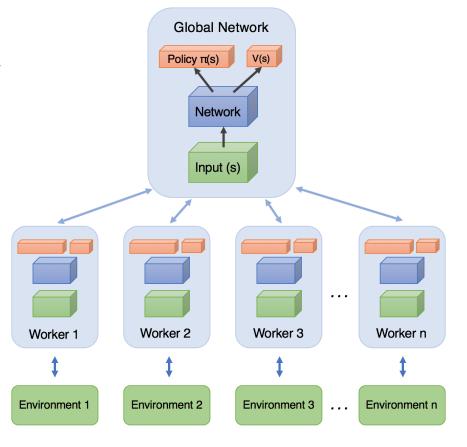
$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t))$$



- Q-learning slow for large state space → Deep Q-learning
 - Input: states
 - Output: Q-value for each action

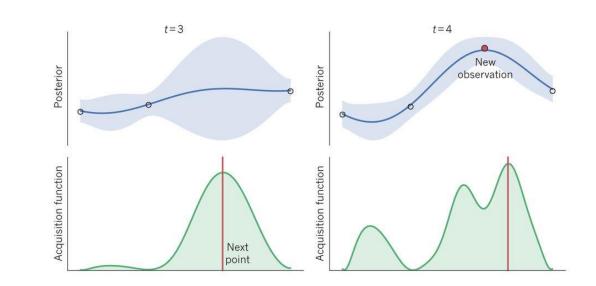


- Asynchronous Advantage Actor-Critic (A3C)
 - Actor develops policy
 - Critic evaluates policy



Hyperparameter Tuning

- Grid Search
- Random Search
- Bayesian Optimization



Results

Deep Q-Learning algorithm learns itself a 'smart' replenishment policy

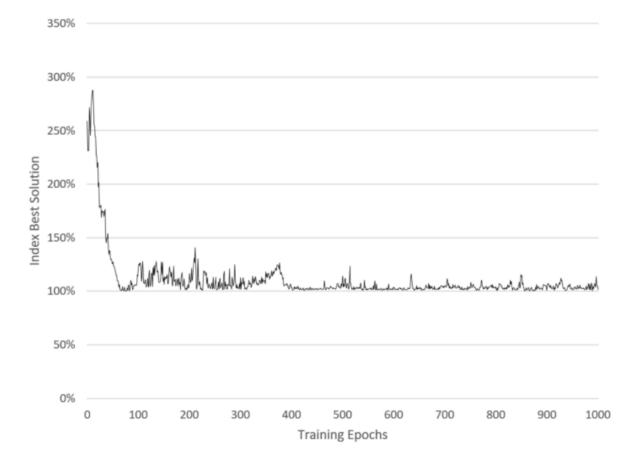
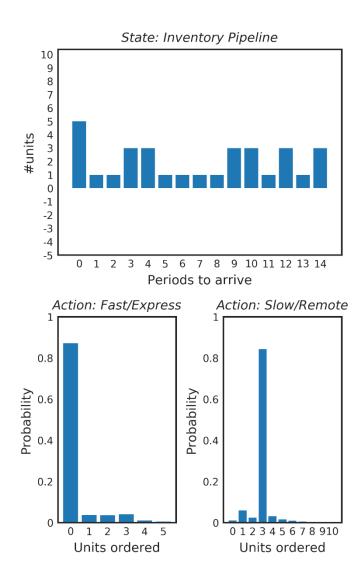
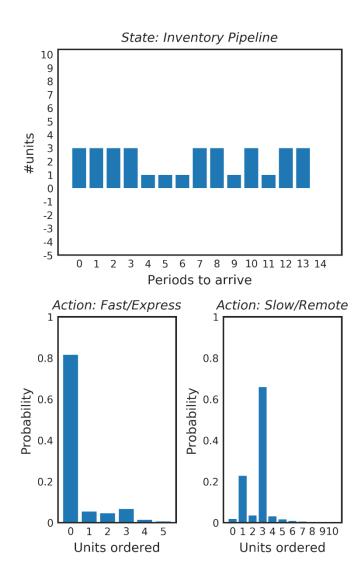
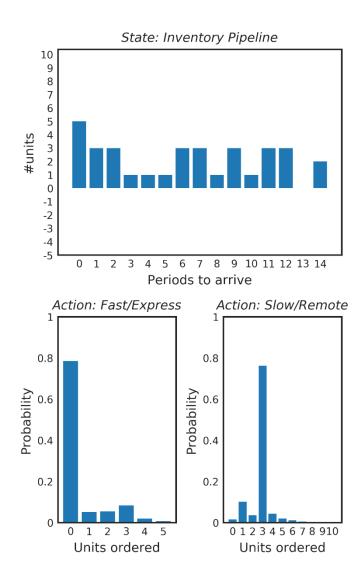


Figure 1: Cost performance during training









Results

Matching performance state-of-the-art dual sourcing policies with daily frequencies

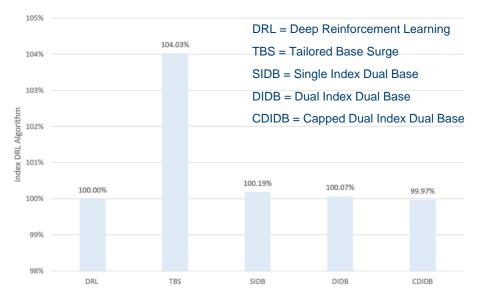


Figure 2: Benchmark with state-of-the-art dual sourcing policies

- Equal performance typical dual sourcing setting (daily frequencies)
- We do not lose performance when extending problem to:
 - Non-daily ordering frequencies
 - E.g. including rail schedule or production schedule
 - Non-linear ordering cost (e.g. per container instead of per unit)

Backslides

Smart replenishment algorithm – Deep Q-learning

Algorithm 1 Deep Reinforcement Learning (DRL) algorithm 1: Initialize replay memory D to capacity ϕ 2: Initialize Q-network with random weights θ 3: Initialize Target Network \hat{Q} with weights $\theta^- = \theta$ 4: Choose Initial State s_1 5: for t = 1, T do for n=1, N do 6: $a_t = \begin{cases} \text{random action,} & \text{with probability } (1 - \epsilon) \\ \operatorname{argmin}_{a \in A} \{ Q(s_t, a; \theta) \}, & \text{else} \end{cases}$ 7: Simulate using a_t and observe reward r_t and next state s_{t+1} 8: Store (s_t, a_t, r_t, s_{t+1}) in replay memory D 9: end for 10: Sample random minibatches of size K from D 11: for j = 1, K do 12: $y_{j} = \begin{cases} r_{j} + \gamma Q(s, \operatorname{argmin}_{a' \in A} Q(s_{j+1}, a'; \theta^{-}), \theta), & \text{if } (s, a) \text{ in sample } j \\ Q(s_{j}, a; \theta), & \text{else} \end{cases}$ 13:end for 14: Minimize loss = $\sum_{j \in K} (y_j - Q(s_j, a_j; \theta))^2$ using Adam optimizer 15:Every z steps, update Target network $\hat{Q} = Q$ 16:17: **end for**

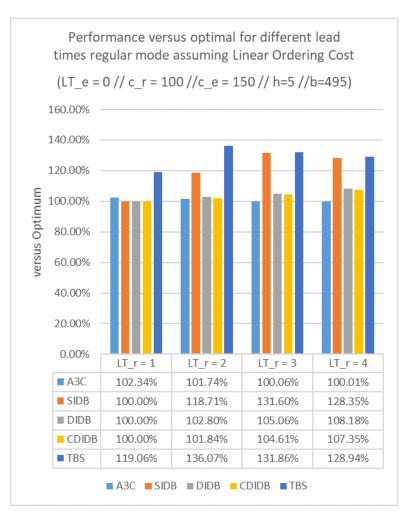
Smart replenishment algorithm – A3C algorithm

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T = 0
// Assume thread-specific parameter vectors \theta' and \theta'_{v}
Initialize thread step counter t \leftarrow 1
repeat
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
     t_{start} = t
     Get state s_t
     repeat
           Perform a_t according to policy \pi(a_t|s_t; \theta')
          Receive reward r_t and new state s_{t+1}
          t \leftarrow t + 1
          T \leftarrow T + 1
     until terminal s_t or t - t_{start} == t_{max}
     R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state} \end{cases}
     for i \in \{t - 1, ..., t_{start}\} do
          R \leftarrow r_i + \gamma R
           Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i | s_i; \theta') (R - V(s_i; \theta'_v))
           Accumulate gradients wrt \theta'_v: d\theta_v \leftarrow d\theta_v + \partial \left(R - V(s_i; \theta'_v)\right)^2 / \partial \theta'_v
     end for
     Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
until T > T_{max}
```

Results

Within 2% of optimal solution in a simple setting



Results

Maintaining performance in a more complex setting

