

Analogies across Hubs and Routers in the Physical and Digital Internet

5th International Physical Internet Conference 18-22 June 2018, Groningen

Jordi Arjona Fundación Valenciaport **IPIC**2018

FUNDACIÓN DE LA COMUNIDAD VALENCIANA PARA LA INVESTIGACIÓN, PROMOCIÓN Y ESTUDIOS COMERCIALES DE VALENCIAPORT

Logistics, some numbers

Imports & Exports \$16 Trillion

272 million containers delivered

Imports & Exports ~60% worlds GDP

Maritime Transport > 10.6 million tons

Still, very innefficient!!!

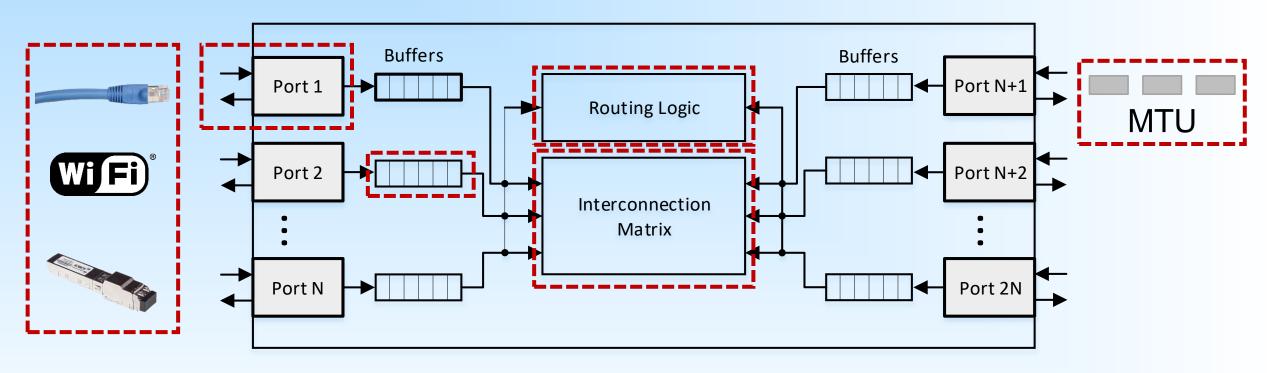
67 million empty containers delivered

23% of miles traveled empty

Average container load of 30-40% in laden trips

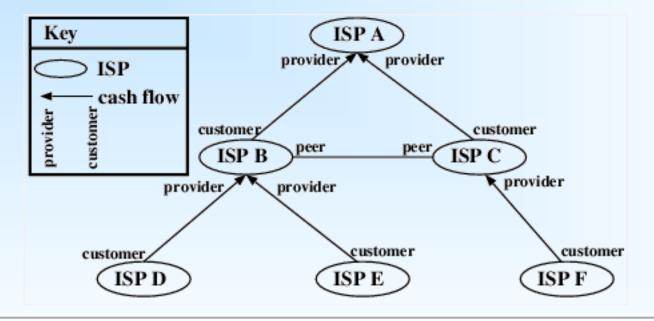
Cargo Innovation Conference Venlo, 08/06/2018

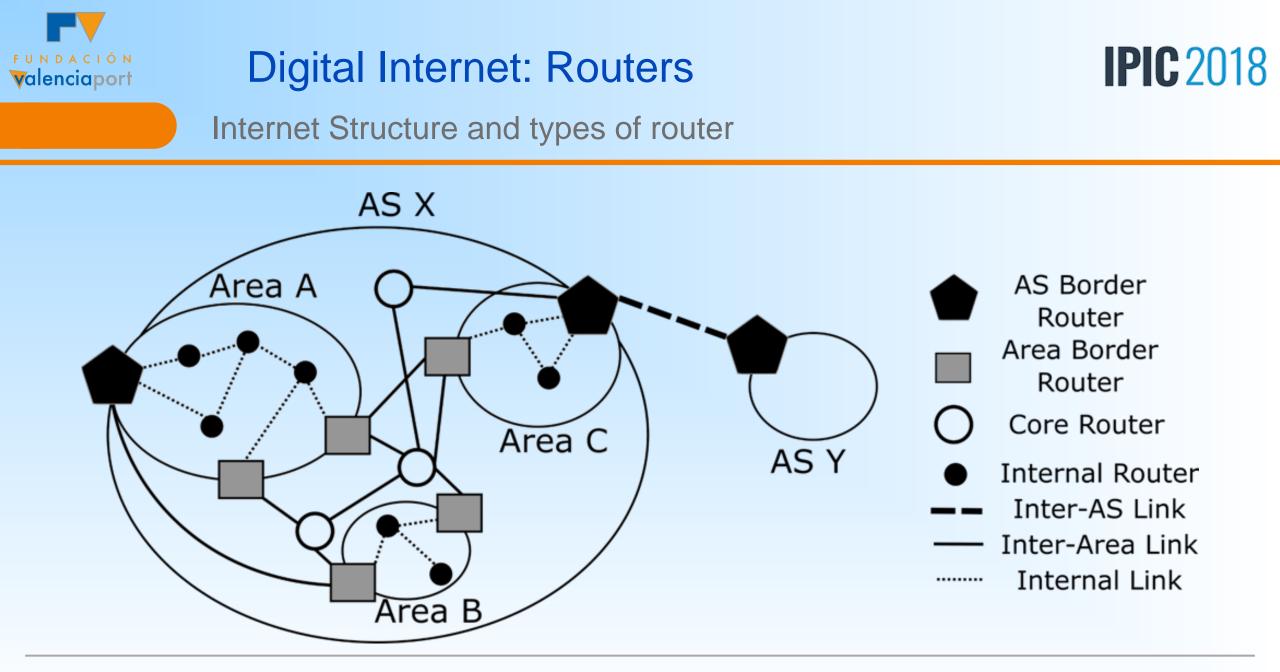
Problems and approaches


- Problems
 - Need for sharing data, events, information, of collaboration across agents
 - Need for synchromodality
 - Need for routing algorithms for logistics
 - Need for common semantics
- Approach
 - Start by defining a common, general model of operations in hubs
 - Inspired on digital internet
 - Leverage models as common semantics for creating new algorithms

Digital Internet: Routers

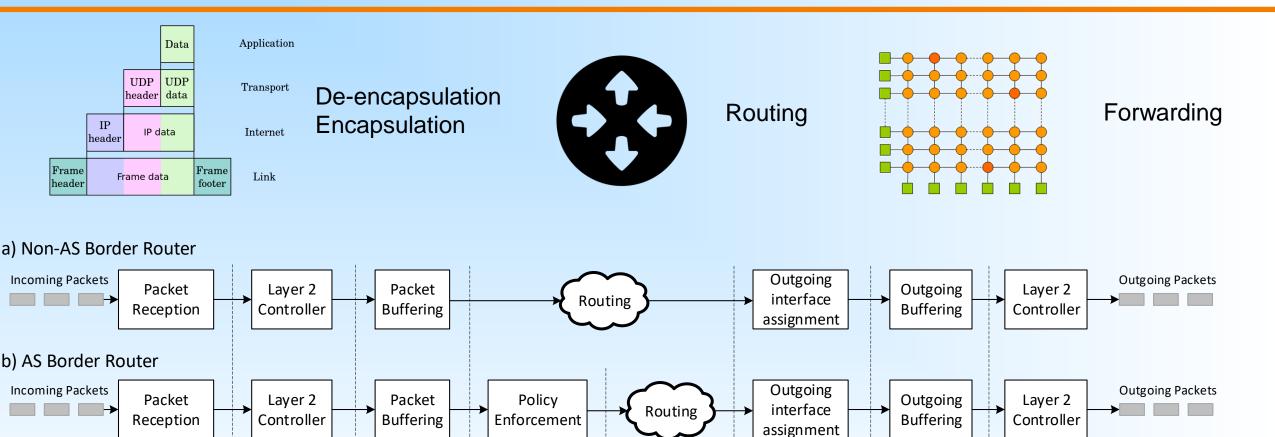
Main features of a router




Digital Internet: Routers

Internet Structure and types of router

- Digital internet structured as a hierarchical tree of Autonomous Systems (AS)
- AS: "connected group of one or more IP prefixes run by one or more network operators which has a single and clearly defined routing policy".
- Different relations among ASs:
 - Peering
 - Customer
 - Provider,...


5th International Physical Internet Conference, Groningen, June 2018

Digital Internet: Routers

Operations

Mapping of the

packet to the

outgoing interface

Waits for the

link to be

available

Encapsulation

5th International Physical Internet Conference, Groningen, June 2018

Integrity check,

deencapsulation

Awaits for

processing slot

Policy check

Reception of

Packet through

Physical mean

Main features of a hub

Physical Internet

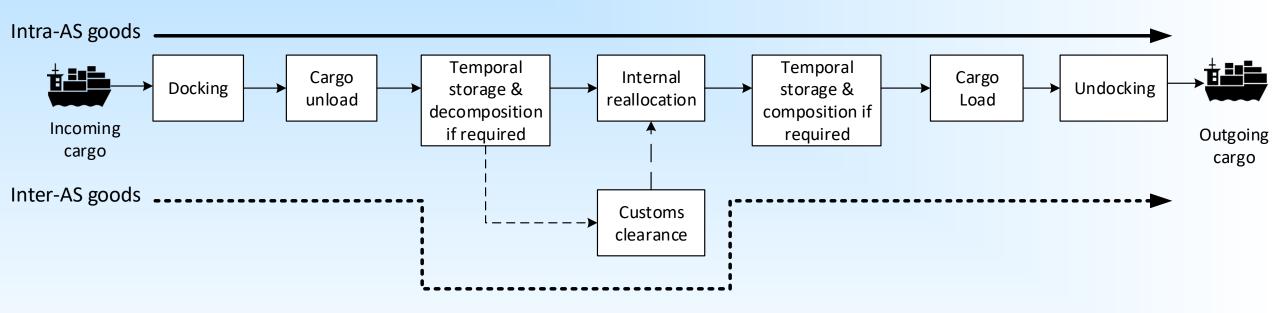
- Transport Modes
- Inbound/Outbound docks
- Turnaound time
- Storage areas
- Package reallocation
- Decomposition/composition

Digital Internet

- Physical modes
- Ports
- Computational latency
- Buffers
- Package reallocation
- De-encapsulation/encapsulation

- Types of hub
- Multiple taxonomies in the literature
 - Single dimension (size OR facilities OR services OR functional hierarchy)
 - Multiple dimensions (Higgins et al.): area of influence, scope of activities and variety of services
- Our proposal
 - Multiple dimensions: area of influence, variety of services, largest and smallest handling units, intermodality capabilities, warehousing capabilities
- Resulting categories:
 - Gateways
 - Large regional distribution hubs
 - Classification centers

Autonomous systems in the Physical Internet


- Autonomous Systems in the Physical Internet:
 - We identify ASs with single markets (SM), economic unions (EU) or countries for four reasons: no internal trade barriers, a common external tariff, and free factor and asset mobility.
 - These areas are governed by a clearly defined and common set of rules for all logistics agents operating within. Similarly, any goods coming from outside the AS have to go through a customs clearance, subject to tariffs, economical policies and agreements.
 - ASBRs: Gateways
- Within the AS
 - Areas and sub-Areas: regions with dense trade networks can be modeled as areas or subareas. ARs and CRs represented by large regional distribution hubs.
 - Local networks: metropolitan areas and last mile. Internal routers equivalent to classification centers.

Operations

• Proposed model for operations in any type of hub

Operations: using the model

- It's the semantics!
 - Having a common model helps defining metrics and algorithms regardless of the type of hub.

The following metrics, Tav and Ts, could be common for any hub:

$$T_{av} = ETA + T_{dk} + \sum_{i=1}^{k} T_{u}^{i} + T_{dc},$$
$$T_{s} = T_{dk} + \sum_{i=1}^{n} T_{l}^{i} + \sum_{j=1}^{m} T_{u}^{j} + T_{udk},$$

However, their inner parameters depend on the type of hub

Operations: practical cases

Proposed Model	Seaport	Intermodal distribution centre	Cross-docking classification centre
Docking (T _{dk})	Sea Traffic Management, Gate control Nautical services (pilotage, mooring, tugging)	Rail shunting operations Vehicle reception	Vehicle reception
Cargo unload (T _u)	Terminal Cranes (STS, RTG, RMG, SC, etc.)	Cranes (RMG, reach stacker, etc.)	Forklifts Human force
Storage & decomposition (T _{dc})	Bulk, general cargo, ITUs handling Open air - yard /warehouse storage	ITU handling, Decomposition in smaller handling units (PI-container) Open air - yard, Incoming dock -reception area, warehouse facilities	Incoming dock -reception area
Customs clearance	Customs inspection and clearance	N/A	N/A
Reallocation (T _r)	Cranes, Internal transport	Cranes, Internal transport, Conveying units, Forklifts	Forklifts, Conveying units
Storage & Composition (T _c)	Bulk, general cargo, ITUs handling Open air – yard /warehouse storage	ITU handling, Composition in bigger handling units (ITUs) Open air – yard, Outgoing dock – expedition area, warehouse facilities	Outgoing dock -expedition area
Cargo load (T _I)	Terminal Cranes (STS, RTG, RMG, SC, etc.)	Cranes (RMG, reach stacker, etc.)	Forklifts Human force
Undocking (T _{udk})	Sea Traffic Management, Gate control Nautical services (pilotage, mooring, tugging)	Rail shunting operations Vehicle reception	Vehicle reception

From Hubs to PI-Hubs

Discussion and Future Work

Digital Internet

• Pros

- Negligible time in router. Routing depends on latency, bandwith,... or other metrics measured in the links.
- Packets can be replicated without cost
- Routing per-hop, adaptable

Cons

- Routing cannot be planned in advance
- Difficulties with QoS

Physical Internet

• Pros

- Control and physical plane are detached
- Possible to model parameters related to operations
- Perform forecasting and resource reservation
- Enabler of synchromodality
- ToDos
 - Devise routing algorithms based on common semantics aimed at reducing costs, delivery time and emissions while providing flexibility and adaptability

Thanks for having us!

Any (easy) question?

FUNDACIÓN VALENCIAPORT - Nueva Sede APV, Avda. del Muelle del Turia, s/n. – Tel. 963939400 – www.fundacion.valenciaport.com