KU LEUVEN

Synchromodality in the Physical Internet

Dual sourcing and real-time switching between transport modes

Nina Lemmens Robert Boute Joren Gijsbrechts

IPIC, June 20th, 2018

Physical Internet

- Global warming issues
 - Reduce GHG emissions in order to reach the goals of the Paris Agreement (2015)
- Cause: current transport and logistics environment is unsustainable
 - Overuse of unimodal road transport
- Potential solution:
 - Modal shift
 - Change focus to alternative low carbon transport modes (e.g. rail transport, inland waterways)

Our contribution

- Impact of synchromodality concept on modal shift
 - Use of several transport modes simultaneously
 - Possibility to switch transport modes along route
 - → increase flexibility of intermodal transport
- Decision rule: How to determine which transport mode to use?

Two definitions of synchromodality

Dual sourcing (Parallel usage)

Real-time switching

Our mode choice policy

Decision (1): Which volumes are shipped by which transport modes at the source?

Dual-base stock policy

Decision (2): Whether or not to switch between transport modes at the terminal

Two-threshold policy

Simulation study: Input data

Based on real business case			
Demand distribution	Gamma distribution		
Lead time distribution	Beta distribution		

Representative cost parameters: Base case					
Transport cost	Road transport:	0.0424 euro per unit per km			
	Intermodal transport: 0.0303 euro per unit per km				
Handling cost	50 euro per switch				
Inventory cost	6 euro per unit per day				
Backlog cost	114 euro per unit pe	er day			

Results: Finding (1)

Real-time switching:

- (1) increases the share of **intermodal** transport, especially after the terminal
- (2) allows a cost reduction

Dual sourcing

Dual sourcing + Real-time switching

Sensitivity analysis

	Representative cost parameters: Base case			
	Transport cost	Road transport:	0.424 euro per unit per km	
		Intermodal transport: 0.303 euro per unit per km		
	Handling cost	50 euro per switch		
	Inventory cost	6 euro per unit per day		
	Backlog cost	114 euro per unit per day		

→ Total: 25 scenarios

Sensitivity analysis

C	ost parameter	Min	Start value	Max
R	oad transport cost	0.0318	0.0424	0.0606
In	termodal transport cost	Not adapted	0.0303	Not adapted
Н	andling cost	Not adapted	50	Not adapted
In	ventory cost	2	6	20
Ba	acklog cost	38 (CSL = 95%) 98 (CSL = 98%)	114 (CSL = 95%) 294 (CSL = 98%)	380 (CSL = 95%) 980 (CSL = 98%)

→ Total: 25 scenarios

Results: Finding (2)

When the ratio transport vs. inventory costs is low, the terminal is mainly used to **slow down** orders.

E.g. transport cost differential = 20%

Dual sourcing

Dual sourcing + Real-time switching

Results: Finding (3)

When the ratio transport vs. inventory costs is high, intermodal transport is used more frequently before the terminal and the terminal is used to **speed up** orders.

E.g. high transport cost differential = 75%

Results: Sensitivity analysis

- 1. Real-time switching increases the share of **intermodal** transport, especially after the terminal, and allows a cost reduction.
- 2. When the ratio transport vs. inventory costs is low, the terminal is mainly used to **slow down** orders.
- 3. When the ratio transport vs. inventory costs is high, intermodal transport is used more frequently before the terminal and the terminal is used to **speed up** orders.

